“Catch me if you can”

Temporal Coherence of Web Archives

Marc Spaniol
Dimitar Denev, Arturas Mazeika, and Gerhard Weikum
Ârhus, September 18, 2008
Agenda

• Motivation

• Problem statement

• Measuring crawl coherence

• Discovering incoherence in web archives/ing
 - Online: At time of capture
 - Offline: From the archive (between captures)

• Experimental results

• Visualization by example

• Conclusions

• Outlook
Motivation

Databases and Information Systems
Prof. Dr. G. Weikum
MPII-Sp-0908-3/16
Problem Statement

• Crawler operations
 - Visit (pages)
 ▪ Extract (links from pages)
 ▪ Compare (versions of pages)
 - Follow (links)

• Website operations
 - Modifications “inside” pages
 ▪ Content (text)
 ▪ Structure (links)
 - Modifications “inside” site
 ▪ Page creation
 ▪ Page deletion

Taking place in parallel

Potentially incoherent
Potential Pitfalls in Web Archiving

- Crawling takes a long (!) time
 - Politeness
 - Multiple seeds per crawl
 - Spam farms

- Crawlers aren’t “really” smart
 - Highly volatile against dynamics in CMS
 - Easy to be trapped, if not exactly configured
 - Doesn’t recognize patterns of “identical” contents
 ⇒ Pre-analysis of site(s) needed

- Some examples of crawler behavior
 - Enjoy link generation from JavaScript, PHP, etc.
 - Tend to go for shopping
 - Like time travelling in calendars

⇒ Crawling is simply “unpredictable”
⇒ Crawlers need “constant” monitoring

Smart(er) Crawling Strategies

⇒ Archive Coherence in Danger!

Evaluation of Crawl Coherence
Measuring Crawl Coherence

A crawl graph is a set of \((p, [t_1, t_2], \mathcal{B}_C, \mathcal{B}_S)\) nodes \(n\), where:

- \(p\) is a web document
- \(t_1\) is the time of retrieving this document
- \(t_2\) is the time of invariance check for this document
- \(\mathcal{B}_C\) is defined as:
 - \(1\), if \(p.d[t_1] \sim p.d[t_2] \land p.d[t_i] \neq "404", i \in \{1,2\}\)
 - \(0\), otherwise
- \(\mathcal{B}_S\) is defined as:
 - \(1\), if sets \(p.H[t_1] \sim p.H[t_2] \land p.d[t_i] \neq "404", i \in \{1,2\}\)
 - \(0\), otherwise

We require that the crawl graph contains a non-empty time interval:

\[
\bigcap_{n \in N} [t_1, t_2] \neq \emptyset
\]
Measuring Crawl Coherence by Example

\[t_1, t_2, t_3, t_4, t_5, t_6, t_7, t_8 \]

\[n_A, n_B, n_C, n_D \]
Discovering Incoherence

• “Easy” for offline coherence analysis
 - Data is stored in the archive
 - Efficiency “unproblematic”

• “Difficult” for online coherence analysis
 - Data needs to be “tapped” from the crawler
 - Efficiency is a key issue

• Proper dating of page versions

• Multistage change measurement procedure
 1) Check HTTP timestamp
 2) Check content timestamp
 3) Compare a hash of the page with a stored hash
 4) Non-significant differences (ads, fortunes, request timestamp)
 - only hash text content, or “useful” text content
 - compare distribution of n-grams (shingling)
 - compute edit distance with previous version
Online Coherence Analysis

- **Do revisit** [yes]
- **revisit** [no]
- **revisit** [yes]
- **Store fetched as revisit** [no]
- **Store fetched as visit** [yes]
- **Fetch Content** [yes]
- **revisit** [no]
- **changed** [yes]
- **Fetch HTTP Headers** [no]
- **More URLs** [yes]
- **More URLs** [no]
- **Create Revisit** [yes]
- **Create Revisit** [no]
- **Load seeds from previous crawl** [yes]
- **Create Crawl** [no]
- **revisit** [no]
Experimental Results

- Crawling with Heritrix
 - (Meta-)Data extraction embedded
 - Revisiting strategy integrated

- Experimental crawls on the mpi-inf.mpg.de domain (so far)
 - ~ 65,000 contents
 - > 25 GB
 - ~ 4.5 hours
 - ~ 6 documents per second

- Online coherence analysis
 - Incoherence < 3‰
 - ~ 1‰ dynamics in dns look-ups
 - ~ 1‰ dynamically created wiki pages
 - ~ 1‰ dynamically created pages by bioinf.mpi-inf.mpg.de CMS
 - < 5 pages with relevant changes
 - Largest coherent sub graph: ~20,000 contents
Post Processing via GraphML

- File format for graphs
 - Core for the description of structural properties
 - Extension mechanisms for application-specific data

- Main features include
 - Directed, undirected, and mixed graphs
 - Hypergraphs
 - Hierarchical graphs
 - Graphical representations
 - References to external data
 - Application-specific attribute data
 - Light-weight parsers

- Based on XML

- Applied in many graph related software applications
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<graphml xmlns="http://graphml.graphdrawing.org/xmlns/graphml"
 xsi:schemaLocation="http://graphml.graphdrawing.org/xmlns/graphml
 http://www.yworks.com/xml/schema/graphml/1.0/ygraphml.xsd">
 ...
 <graph edgedefault="directed" id="G229">
 <node id="http://www.mpi-inf.mpg.de/index.html">
 <data key="d0">
 <y:ShapeNode>
 <y:Geometry width="10.003" height="10.003"/>
 <y:Fill color="#00FF00" transparent="false"/>
 <y:Shape type="ellipse"/>
 </y:ShapeNode>
 </data>
 <data key="d1">http://www.mpi-inf.mpg.de/index.html OK</data>
 </node>
 ...
 ...
 </graph>
</graphml>
Visualization of mpi-inf.mpg.de
Online Coherence
Conclusions

- Smart(er) revisiting strategy
 - Speeds up crawling
 - Reduces network and server load

- Incoherence of crawl coherence is
 - Quantifiable at time of capture
 - Visualizable in a subsequent post processing step

- Visualization helps crawl engineers to
 - Identify critical (sub-)graphs
 - Adjust future crawls
 - Strategy
 - Frequency
 - Understand the nature of incoherence
Outlook

- Development of an “incoherence cost model”
 - Content
 - Link structure
 - Status code
 - …

- Identification of CMS related changes
 - Application of shingling
 - Disregarding of non-relevant changes

- Analysis of different re-visiting strategies

- Crawling and comparison of additional domains
 - News
 - Sports
 - …

- Identification of change patterns
The End!