
Incremental crawling 

with Heritrix

Kristinn Sigurðsson

National and University Library of Iceland

kristsi@bok.hi.is

IWAW 2005



Introduction

Crawl variations

(Heritrix dev team)

� Broad crawling

� Focused crawling

� Continuous crawling

� Experimental crawling



Crawling strategies

� Broad and focused crawling share many 
things
� Differ primarily in scope focus

� Both utilize a snapshot crawling strategy

� Snapshot crawling
� Typically large scope

• Broad or deep

� Repeatable, but without using knowledge of 
previous crawls
• Typically large intervals between repeats

� Each URI visited once only



Crawling strategies cont.

� Continuous crawling

� Requires visiting resources repeatedly 

within a single “crawl”

• I.e. one run of the crawl software

� Requires an incremental crawling

strategy



An incremental strategy

� Each URI visited repeatedly

� Can do a good job of capturing 

changes in URIs

� Doesn’t handle large collections as 

well

� Needs to revisit URIs within a 

reasonable timeframe



Snapshot v/ Incremental

Size of scope

Changes over time

Incremental strategies 

capture changes very well

Snapshot strategies are 

good at capturing a large 

scope



Heritrix

� Has decent snapshot capabilities

� BdbFrontier

� Lacked all ability to crawl 

incrementally

� Our purpose was to address this 

without compromising Heritrix’s

• Snapshot capabilities

• Inherent modularity



The goal therefor

� Create an ‘add-on’ module for Heritrix 

that implements an incremental crawl 

strategy

� Key issues:

• How will this fit in with Heritrix’s 

architecture?

• Defining a strategy



Defining a strategy

� Goal: Capture all changes

� This is infeasible

� Periodic revisiting

� Adaptive revisiting

� Adapting to observed change 

frequencies

� Heuristic driven



Heuristics

� Resources that change often are likely to 
continue to do so

� The file type of resources significantly 
affects the probable change rates

� Other

� Document hierarchy

� Presence or abscense of meta-data
• Last-modified – resources that are missing this are 
about twice as likely to change as those with it

� And many others



A strategy to implement

1. Scope is crawled (discovery)

2. Each crawled URI is assigned a 
revisit time

� Initial wait interval depends on file 
type

3. After revisiting the wait interval is 

� Increased by a factor if change is 
detected

� Decreased by a factor if no change is 
detected



Heritrix architecture (briefly)

CrawlController

User interface 
(web based)

URI issued for 

processing

Processing 

complete

Return URI

Discovered URIs

are scheduled as

CandidateURIs

Frontier

Queue

Candidate

or

CrawlURI

Queue

Candidate

or

CrawlURI

Queue

Candidate

or

CrawlURI

d

Processors

(multi threaded)

Pre fetch

Fetcher

Extractor

Writing

Post Processing

1



AdaptiveRevisitFrontier

� Relies on a series of 
host specific queues

� Priority queues rather 
then FIFO
• Priority based on ‘time of 
next processing’ and 
scheduling directive

� Implemented using 
Berkley DB

� Host ‘valence’ > 1 
supported



HostQueues



ChangeEvaluator

� Compares the hash of the current 

document with a hash of the previous 

fetch, stored in the CrawlURI

� Hash (SHA-1) is created by the 

FetchHTTP

• Only works with HTTP protocol

� The type of the HASH is unimportant



Change detection

� The ChangeEvaluator assumes that the 
hash provides a good indicator for change

� We know this may not be so

� The advantage of using a strict hash is that 
the probability of falsely assuming no 
change (i.e. missing a version) is virtually 
nill.

� However, we know that many (often 
automatically generated) changes do not 
represent changes in the actual content.



HTTPContentDigest

� Selectively weakens the content hash

� User inputs a regular expression 
matching known problematic areas of 
documents

� Downloaded document is processed 
and areas matching the reg.expr. are 
removed 

� Hash is calculated on the duplicate 
document thus created



HTTPMidFetchUnchangedFilter

� Applied to the FetchHTTP processor

� Checks HTTP header
� last-modified

� etag

� If only one is present, the filter will 
determine that the document is unchanged 
if it is unchanged

� If both are present, they must agree that the 
document is unchanged

� If the filter decides that a document has not 
changed, it aborts the download of the 
HTTP document body



WaitEvaluators

� Implements the adaptive strategy

� Determines the wait intervals for URIs

� Multiple WaitEvaluators are used

� One for each document type

� Document types are specified by 

reg.expr. matching the relevant mime 

types.



Settings image



ToeThread 

(processing chain)

Pre-fetch

Fetch

Extractor

Write/index

Post-processing

Preselector

PreconditionEnforcer

FetchDNS

FetchHTTP

ExtractorHTTP

ExtractorHTML

ExtractorCSS

ExtractorJS

ExtractorSWF

ARCWriterProcessor

CrawlStateUpdater

Postselector

CrawlURI

HTTPContentDigest

ChangeEvaluator

WaitEvaluator



Summary of implementation

� Highly modular

� Easy to costumize any given aspect of 

an incremental crawl

� Using Heritrix’s settings system of 

overrides and refinements a crawl can 

be very finely tuned



Results

� Initial crawl went very well

� Frontier is stable

� Crawls can be suspended and resumed easily

� Performance (i.e. size of crawl) could be better

• Crawling several thousand URIs per host over dozens 

of hosts is currently about as much as it can handle

� Included in Heritrix 1.4.0

� Marked as ‘experimental’

� Work continues

� Will be used for continuous crawling in Iceland



Specific issues

� Improve performance

� Use of ‘fingerprint’ list of already 

included URIs

� Canonicalization support is limited at 

present



Future work

� Irregular change frequencies of the same 
URLs

� Some websites are updated sporadically
• Example: A politicians website

• Updated often before elections, but rarely in 
between

� The crawler will be slow to detect and adjust 
to these

� Possible solution: Allow operators to ‘wipe 
clean’ or reset the wait interval for selected 
URLs or domains



Future work cont.

� Change detection

� Very difficult topic

� Explore ‘close enough’ comparisons

� Further testing and experimentation is 
needed

� Fine tune the available parameters
• What are good values

� Explore using other/additional factors for 
evaluating wait times


