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Introduction

Crawl variations

(Heritrix dev team)

� Broad crawling

� Focused crawling

� Continuous crawling

� Experimental crawling



Crawling strategies

� Broad and focused crawling share many 
things
� Differ primarily in scope focus

� Both utilize a snapshot crawling strategy

� Snapshot crawling
� Typically large scope

• Broad or deep

� Repeatable, but without using knowledge of 
previous crawls
• Typically large intervals between repeats

� Each URI visited once only



Crawling strategies cont.

� Continuous crawling

� Requires visiting resources repeatedly 

within a single “crawl”

• I.e. one run of the crawl software

� Requires an incremental crawling

strategy



An incremental strategy

� Each URI visited repeatedly

� Can do a good job of capturing 

changes in URIs

� Doesn’t handle large collections as 

well

� Needs to revisit URIs within a 

reasonable timeframe



Snapshot v/ Incremental

Size of scope

Changes over time

Incremental strategies 

capture changes very well

Snapshot strategies are 

good at capturing a large 

scope



Heritrix

� Has decent snapshot capabilities

� BdbFrontier

� Lacked all ability to crawl 

incrementally

� Our purpose was to address this 

without compromising Heritrix’s

• Snapshot capabilities

• Inherent modularity



The goal therefor

� Create an ‘add-on’ module for Heritrix 

that implements an incremental crawl 

strategy

� Key issues:

• How will this fit in with Heritrix’s 

architecture?

• Defining a strategy



Defining a strategy

� Goal: Capture all changes

� This is infeasible

� Periodic revisiting

� Adaptive revisiting

� Adapting to observed change 

frequencies

� Heuristic driven



Heuristics

� Resources that change often are likely to 
continue to do so

� The file type of resources significantly 
affects the probable change rates

� Other

� Document hierarchy

� Presence or abscense of meta-data
• Last-modified – resources that are missing this are 
about twice as likely to change as those with it

� And many others



A strategy to implement

1. Scope is crawled (discovery)

2. Each crawled URI is assigned a 
revisit time

� Initial wait interval depends on file 
type

3. After revisiting the wait interval is 

� Increased by a factor if change is 
detected

� Decreased by a factor if no change is 
detected



Heritrix architecture (briefly)
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AdaptiveRevisitFrontier

� Relies on a series of 
host specific queues

� Priority queues rather 
then FIFO
• Priority based on ‘time of 
next processing’ and 
scheduling directive

� Implemented using 
Berkley DB

� Host ‘valence’ > 1 
supported



HostQueues



ChangeEvaluator

� Compares the hash of the current 

document with a hash of the previous 

fetch, stored in the CrawlURI

� Hash (SHA-1) is created by the 

FetchHTTP

• Only works with HTTP protocol

� The type of the HASH is unimportant



Change detection

� The ChangeEvaluator assumes that the 
hash provides a good indicator for change

� We know this may not be so

� The advantage of using a strict hash is that 
the probability of falsely assuming no 
change (i.e. missing a version) is virtually 
nill.

� However, we know that many (often 
automatically generated) changes do not 
represent changes in the actual content.



HTTPContentDigest

� Selectively weakens the content hash

� User inputs a regular expression 
matching known problematic areas of 
documents

� Downloaded document is processed 
and areas matching the reg.expr. are 
removed 

� Hash is calculated on the duplicate 
document thus created



HTTPMidFetchUnchangedFilter

� Applied to the FetchHTTP processor

� Checks HTTP header
� last-modified

� etag

� If only one is present, the filter will 
determine that the document is unchanged 
if it is unchanged

� If both are present, they must agree that the 
document is unchanged

� If the filter decides that a document has not 
changed, it aborts the download of the 
HTTP document body



WaitEvaluators

� Implements the adaptive strategy

� Determines the wait intervals for URIs

� Multiple WaitEvaluators are used

� One for each document type

� Document types are specified by 

reg.expr. matching the relevant mime 

types.



Settings image
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Summary of implementation

� Highly modular

� Easy to costumize any given aspect of 

an incremental crawl

� Using Heritrix’s settings system of 

overrides and refinements a crawl can 

be very finely tuned



Results

� Initial crawl went very well

� Frontier is stable

� Crawls can be suspended and resumed easily

� Performance (i.e. size of crawl) could be better

• Crawling several thousand URIs per host over dozens 

of hosts is currently about as much as it can handle

� Included in Heritrix 1.4.0

� Marked as ‘experimental’

� Work continues

� Will be used for continuous crawling in Iceland



Specific issues

� Improve performance

� Use of ‘fingerprint’ list of already 

included URIs

� Canonicalization support is limited at 

present



Future work

� Irregular change frequencies of the same 
URLs

� Some websites are updated sporadically
• Example: A politicians website

• Updated often before elections, but rarely in 
between

� The crawler will be slow to detect and adjust 
to these

� Possible solution: Allow operators to ‘wipe 
clean’ or reset the wait interval for selected 
URLs or domains



Future work cont.

� Change detection

� Very difficult topic

� Explore ‘close enough’ comparisons

� Further testing and experimentation is 
needed

� Fine tune the available parameters
• What are good values

� Explore using other/additional factors for 
evaluating wait times


