Incremental crawling
with Heritrix

Kristinn Sigurdsson

National and University Library of lceland
kKristsi@bok.hi.is

IWAW 2005



1™ 2| Introduction

Crawl variations
(Heritrix dev team)
Broad crawling
Focused crawling
Continuous crawling
Experimental crawling



1™ &| Crawling strategies

o Broad and focused crawling share many
things
Differ primarily in scope focus
Both utilize a snapshot crawling strategy
o Snapshot crawling
Typically large scope
» Broad or deep

Repeatable, but without using knowledge of
previous crawls

 Typically large intervals between repeats
Each URI visited once only



1™ %) Crawling strategies cont.

o Continuous crawling

Requires visiting resources repeatedly
within a single “crawl”

* |.e. one run of the crawl software

Requires an incremental crawling
strategy



1™ %[ An incremental strategy

o Each URI visited repeatedly

o Can do a good job of capturing
changes in URIs

o Doesn’t handle large collections as
well

Needs to revisit URIs within a
reasonable timeframe



1EE

Snapshot v/ Incremental

Incremental strategies
capture changes very well

» Changes over time

Snapshot strategies are
good at capturing a large
scope

Size of scope



9™ 2 Heritrix

o Has decent snapshot capabilities
BdbFrontier

o Lacked all ability to crawl
incrementally
Our purpose was to address this
without compromising Heritrix’s

« Snapshot capabilities
* Inherent modularity



1™ 8| The goal therefor

o Create an ‘add-on’ module for Heritrix
that implements an incremental crawl
strategy

Key issues:

 How will this fit in with Heritrix’s
architecture?

» Defining a strategy



1M E

Defining a strategy

o Goal: Capture all changes
This is infeasible

o Periodic revisiting
o Adaptive revisiting

Adapting to observed change
frequencies

Heuristic driven



1M E

Heuristics

o Resources that change often are likely to
continue to do so

o The file type of resources significantly
affects the probable change rates

o Other

Document hierarchy

Presence or abscense of meta-data

 Last-modified — resources that are missing this are
about twice as likely to change as those with it

And many others



1M E

A strategy to implement

1. Scope is crawled (discovery)

2. Each crawled URI is assigned a
revisit time

Initial wait interval depends on file
type
3. After revisiting the wait interval is

Increased by a factor if change is
detected

Decreased by a factor if no change is
detected



1™ 8| Heritrix architecture (briefly)

User interface
(web based)

!

/ CrawlController \

URI issued P n
processing rocessors
Pre fetch
Frontier
Fetcher
Queue Queue Queue
. . . Extraf;tor
Candidate Candidate Candidate
or or or
CrawlURI CrawlURI CrawlURI
Writing
¢ Discovered URIs
are scheduled as
CandidateURIs Post Processing
(multi threaded)
complete

\ Return URI




1™ 8| AdaptiveRevisitFrontier

o Relies on a series of
host specific queues

AdaptiveRevisitFrontier

Priority queues rather
then FIFO

* Priority based on ‘time of
next processing’ and
scheduling directive

Implemented using
Berkley DB

Host ‘valence’ > 1
supported

AdaptiveRevisitQueueList

AdaptiveRevisit-
HostQueue

— N
~

CrawlURI

Berkley database




1™ 2| HostQueues

When a URI is issued for

processing it is set aside here The current ‘next’ URI

The host queue
Processing URIs database Primary URI database Secondary database

Http://bok.hi.. CrawlURI Http://bok.hi.. CrawlURI x| Time of next processing K

Http://bok.hi.. CrawlURI Http://bok.hi.. CrawlURI < Time of next processing
Http://bok.hi.. CrawlURI Time of next processing
Hittp://bok.hi.. CrawlURI & Time of next processing
Http://bok.hi.. CrawlURI Time of next processing
Http://bok.hi.. CrawlURI | Time of next processing
Http://bok.hi.. CrawlURI Time of next processing
Http://bok.hi.. CrawlURI ] Time of next processing
Http://bok.hi.. CrawlURI Time of next processing

When processing is complete
the URI is returned to the queue



1™ %) ChangeEvaluator

o Compares the hash of the current
document with a hash of the previous
fetch, stored in the CrawlURI

Hash (SHA-1) is created by the
FetchHTTP

* Only works with HTTP protocol
The type of the HASH is unimportant



1M E

Change detection

o The ChangeEvaluator assumes that the
hash provides a good indicator for change

o We know this may not be so

o The advantage of using a strict hash is that
the probability of falsely assuming no
change (i.e. missing a version) is virtually
nill.

o However, we know that many (often
automatically generated) changes do not
represent changes in the actual content.



1™ %) HTTPContentDigest

o Selectively weakens the content hash

User inputs a regular expression
matching known problematic areas of
documents

Downloaded document is processed
and areas matching the reg.expr. are
removed

Hash is calculated on the duplicate
document thus created



1M E

HTTPMidFetchUnchangedFilter

o Applied to the FetchHTTP processor

o Checks HTTP header
last-modified
etag

o If only one is present, the filter will
determine that the document is unchanged
if it is unchanged

o If both are present, they must agree that the
document is unchanged

o If the filter decides that a document has not
changed, it aborts the download of the
HTTP document body



1™ 8| WaitkEvaluators

o Implements the adaptive strategy
Determines the wait intervals for URIs
o Multiple WaitEvaluators are used
One for each document type

Document types are specified by
reg.expr. matching the relevant mime
types.



!| llll."li_ |I| Ty

TextWaitEvaluator

enabled:
initial-wait-interval-seconds:
max-wait-interval-seconds:

min-wait-interval-seconds:

default-wait-interval-seconds:

unchanged-factor:
changed-factor:
use-overdue-time:

content-regular-expression:

ImageWaitEvaluator

enabled:
initial-wait-interval-seconds:
max-wait-interval-seconds:

min-wait-interval-seconds:

default-wait-interval-seconds:

unchanged-factor:
changed-factor:
use-overdue-time:

content-regular-expression:

WaitEvaluator

enabled:
initial-wait-interval-seconds:
max-wait-interval-seconds:

min-wait-interval-seconds:

default-wait-interval-seconds:

unchanged-factor:
changed-factor:

use-overdue-time:

(L B

= (]

(L S

e (]

ot SRS

(]

Ewvaluates how long to wait before fetching a URI again.

ITrue

[20

[2419200

[20

[259200

[1.5

[1.5

[False

I"text,r‘.*S
Ewvaluates how long to wait before fetching a URI again.

ITrue

[200

[2419200

[200

[259200

[1.5

[1.5

[False

I"imagef.*$

Ewvaluates how long to wait before fetching a URI again.

ITrue

(1000

[2419200

(1000

[259200

[1.5

[1.5

[False



ToeThread
(processing chain)
CrawlURI

5 Pre-fetch
H' = .Il T | Preselector |

‘ PreconditionEnforcer ‘

/ Fetch \

| FetchDNS |

| FetchHTTP |

Extractor

) | HTTPContentDigest
<

‘ ExtractorHTTP ‘

\\{ ChangeEvaluator

‘ ExtractorHTML ‘

‘ ExtractorCSS \

‘ ExtractordS ‘

‘ ExtractorSWF ‘

Write/index

‘ ARCWriterProcessor ‘

\ Postselector

Post-processing #/{ WaitEvaluator
‘ CrawlStateUpdater

v




18 &) Summary of implementation

o Highly modular

Easy to costumize any given aspect of
an incremental crawl

o Using Heritrix’s settings system of
overrides and refinements a crawl can
be very finely tuned



1EE

Results

o Initial crawl went very well
Frontier is stable
Crawls can be suspended and resumed easily

Performance (i.e. size of crawl) could be better

* Crawling several thousand URIs per host over dozens
of hosts is currently about as much as it can handle

o Included in Heritrix 1.4.0
Marked as ‘experimental’

o Work continues
Will be used for continuous crawling in Iceland



1™ 8| Specific issues

o Improve performance

Use of ‘fingerprint’ list of already
included URIs

o Canonicalization support is limited at
present



1M E

Future work

o Irregular change frequencies of the same
URLs

Some websites are updated sporadically

« Example: A politicians website

Updated often before elections, but rarely in
between

The crawler will be slow to detect and adjust
to these

Possible solution: Allow operators to ‘wipe

clean’ or reset the wait interval for selected
URLs or domains



1™ 8| Future work cont.

o Change detection
Very difficult topic
Explore ‘close enough’ comparisons

o Further testing and experimentation is
needed

Fine tune the available parameters
* What are good values

Explore using other/additional factors for
evaluating wait times



